

WTP Pretreatment Facility Technical Issues Resolution Update

Langdon Holton, Senior Technical Authority
Presented by: Waste Treatment and Immobilization Plant

April 19, 2017

Waste Treatment and Immobilization Plant

Pretreatment Facility Function

- Tank waste is pumped to the Pretreatment (PT) Facility's interior waste feed receipt vessels
- PT separates the low-activity radioactive waste from the high-level radioactive waste
- During pretreatment, waste is concentrated by removing water in an evaporator
- > Solids filtered out for inclusion in high-level waste stream; remaining soluble, highly radioactive isotopes removed with ion-exchange process

PT Facility Technical Issue Resolution Impacts

- ➤ In late 2012, the U.S. Department of Energy (DOE), Office of River Protection (ORP) limited project activities at the PT Facility
- ➤ Restrictions were imposed on the remaining engineering, procurement, and construction work due to:
 - Unresolved technical, management, and quality issues
 - Need for design and nuclear safety basis alignment

Pretreatment Facility Technical Issues

T1 Hydrogen Gas Events in Vessels*

- > Risk of combustion in the headspace of high-solids vessels due to hydrogen accumulation
- Resolved with approval of revised hydrogen safety control strategy consisting of both preventive and mitigative safety and process controls

T2 Criticality in Pulse-Jet Mixer (PJM) Vessels*

- > Dense fissile particles could settle on the bottom of Waste Treatment and Immobilization Plant (WTP) vessels with sufficient mass and geometry such that a criticality event is credible
- > Issue resolved via calculations, engineering and chemistry studies, criticality safety evaluations, and integrated process controls

T3 Hydrogen in Piping and Ancillary Vessels*

- > Flammable gases generated by waste treated in WTP could accumulate in process piping and cause deflagration event
- Resolved by updating WTP safety basis, basis of design, and process piping design criteria to prevent or control potential hydrogen explosions

T4 PJM Vessel Mixing and Control

- Concern with adequacy of pulse jet mixer (PJM) mixing and control system
- Complete testing of standard high solids vessel prototype

T5 Erosion/Corrosion in Piping and Vessels

- ➤ Uncertainties exist in waste feed characteristics and ability to meet 40-year service life
- > Confirm erosion/corrosion design basis, including margin, through testing and analysis

T6 Design Redundancy/ In Service Inspection

- > Perform failure modes, effects, and criticality analysis
- Complete conceptual design of planning areas 2, 3, and 4

T7 Black Cell Vessel/ Equipment Structural Integrity

- Seismic ground motion criteria for WTP changed around 2005
- > Complete structural analysis of standard vessel and strategy for structural upgrades to installed vessels

T8 Facility Ventilation/Process
Off-Gas Treatment

- Multiple technical challenges associated with ventilation system, including high-efficiency particulate air (HEPA) filters
- > Complete engineering/nuclear safety assessments to ensure ventilation meets requirements

Technical Issues Resolution Strategic Elements

Design changes

- Standard high-solids vessel (SHSV) PJM vessel designs
- Planning areas 2, 3, and 4 conceptual design study

> Pretreatment flowsheet changes

- Removal of oxidative leaching process
- Reduced aluminum leaching temperature
- Removal of cesium concentration evaporator

Test SHSV at full scale

Updated nuclear safety analysis

- Hydrogen in vessels
- Criticality
- Hydrogen in piping and ancillary vessels

Standard High-Solids Vessel Testing

- PJM control testing began in December 2016
- Testing completion expected end of 2017

An overhead view of the 16-foot-diameter by 35-foot-tall vessel shows the platform and all test equipment installed.

Focus of Technical Issues

- > Technical Issues Focused in Pretreatment Planning Areas 2, 3, and 4
- ➤ DOE is evaluating replacing up to eight vessels with smaller vessels; approximately 17,000 gallons, 16-feet diameter, six PJMs
- Candidate vessels to replace in design represent five designs: 30,000 - 160,000 gallons

Focus of Technical Issues

Vessel color coding depicts common functionality between current design configuration (top) and proposed design configuration with SHSV (bottom).

- ORP striving to have all remaining technical issues resolved in 2018 and return WTP Pretreatment to design
- WTP Pretreatment authorization to proceed with production engineering
- Complete facility designs and safety basis documentation in accordance with federal regulations

